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ON DUALITY THEOREMS FOR ROBUST
OPTIMIZATION PROBLEMS

GUE MYUNG LEE* AND MooN HEE Kim**

ABSTRACT. A robust optimization problem, which has a maxi-
mum function of continuously differentiable functions as its objec-
tive function, continuously differentiable functions as its constraint
functions and a geometric constraint, is considered. We prove a nec-
essary optimality theorem and a sufficient optimality theorem for
the robust optimization problem. We formulate a Wolfe type dual
problem for the robust optimization problem, which has a differen-
tiable Lagrangean function, and establish the weak duality theorem
and the strong duality theorem which hold between the robust opti-
mization problem and its Wolfe type dual problem. Moreover, sad-
dle point theorems for the robust optimization problem are given
under convexity assumptions.

1. Introduction

Consider the standard nonlinear programming problem with inequal-
ity constraints and a geometric constraint.

(P) gnﬂgn{f(x) :gi(x) <0,i=1,---,m, z €C},

where f : R® — R and ¢g; : R® — R are continuously differentiable
functions, and C is a closed convex subset of R™. The problem in the
face of data uncertainty in the objective function and the constraints
can be captured by the following nonlinear programming problem:

(UP) ieann{f(:v,u) cgi(z,v) <0, i=1,--- ,m, x € C},
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where u, v; are uncertain parametersand u € U, v; € V;,i =1,--- ,m for
some convex compact sets U C RP,V; C R?4 = 1,--- ,m, respectively
and f: R" xRP - R, ¢g; : R" xR? — R,4 =1, -+ ,m are continuously

differentiable. Robust optimization, which has emerged as a powerful
deterministic approach for studying mathematical programming under
uncertainty ([1] - [4], [6]), associates with the uncertain program (UP)
its robust counterpart [5],

(RP) inf {max f(z,u) : gi(z,v;) <0, Vo, €V;, i=1,--- ,m, x € C},
zeR™ " uelU

where the uncertain objective function and constraints are enforced for
every possible value of the parameters within their prescribed uncer-
tainty sets U, V;, i = 1,---,m. Recently, Jeyakumar, Li and Lee [7]
established necessary optimality theorems and robust duality theorems
for a generalized convex programming problem in the face of data uncer-
tainty. Kuroiwa and Lee [9] extended the necessary optimality theorem
to a multiobjective robust optimization problem. Futhermore, Kim [8]
extended the robust duality theorems to a multiobjective robust opti-
mization problem.

In this paper, we consider a robust optimization problem, which has
a maximum function of continuously differentiable functions as its ob-
jective function, continuously differentiable functions as its constraint
functions and a geometric constraint. We prove necessary and sufficient
optimality theorems for the robust optimization problem. We formulate
a Wolfe type dual problem for the robust optimization problem, which
has a differentiable Lagrangean function, and establish the weak duality
theorem and the strong duality theorem which hold between the robust
optimization problem and its Wolfe type dual problem. Moreover, sad-
dle point theorems for the robust optimization problem are given under
convexity assumptions.

2. Robust optimality theorems

In this section, we provide necessary, and sufficient optimality condi-
tions for the uncertain optimization problem (UP) by using its robust
counterpart (RP). To begin with, we recall that the robust feasible set
F' is defined by

F:={zeR":gi(x,v) <0, Vo€V, i=1,--- ,m, x € C}.
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We say that =* is a robust solution of (UP) if 2* is a solution of (RP),
that is, * € F and max,cy f(x,u) > maxycy f(z*,u) for any x € F.
We denote Vig the derivative of g with respect to the first variable.

DEFINITION 2.1. Let C be a closed convex set in R™ and x € C. Let
Ne(z) = {v e R" | vT(y —x) <0 for all y € C}. Then Ng(z) is called
the normal cone to C at z.

LEMMA 2.2. [12] Let © be a nonempty, compact topological space
and let h : R" x © — R be such that h(-,0) is differentiable for every
6 € © and V1h(z,0) is continuous on R" x ©. Let ¢(x) = supyeg h(z,0).
Define © to be O(x) := argmaxgee h(x,0). Then the function ¢(z) is
locally Lipschitz continuous, directionally differentiable and

¢ (x,d) = sup Vlh(x,O)Td,
0cO(x)

where ¢'(z,d) = lim;_oy 791’(35“?7(1’(@.

Let z € F and let us decompose J := {1,--- ,m} into two index sets
J = J1(Z)UJ2(Z) where J1(Z) = {j € J | Fv; € V} s.t. gj(Z,v;) = 0} and
Jo(7) = J\J1(7). Since 7 € F', J1(7) = {j € J | maxy,ev; g;(T,v;) = 0}
and J2(Z) = {j € J | maxyev, g;(7,v;) < 0}.

Now we say that an Extended Mangasarian-Fromovitz constraint
qualification (EMFCQ) holds at z for (RP) if there exists & € C such

that for any j € J1(Z) and any v; € V},
V19;(Z,v) (& —2) < 0.
Now we present a necessary optimality theorem for a robust solution
of (UP). Following the approaches of the proofs for Theorem 3.1 in [7]

and Theorem 3.7 in [9], we can prove the following theorem. For the
completeness, we give the proof for the following theorem.

THEOREM 2.3. Let T € F be a robust solution of (UP). Suppose that
f(z,-) is concave on U and g;j(Z,-) are concave on V;, j = 1,--- ,m.
Then there exist A > 0, p; > 0, 5 =1,---,m, not all zero, u € U and
v; €Vj, g=1,---,m such that

0 €AV f(Z,0) + Y 11;V1g;(Z,0;) + Ne (),
j=1

(@) = max f (7. u),
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Moreover, if we assume that the Extended Mangasarian-Fromovitz con-
straint qualification (EMFCQ) holds at &, then

(2.1) 0€Vif(@a) + Y uVig(Z,v;) + Ne (@),
j=1
(2.2) F(z,) = ma [z, ),
ue
Proof. Assume that max,, ey, g;(%,v;) <0, j=1,--- ,m,and J1(Z) =

(. Then Z € intF, where intF' is the interior of F. Let ¢(z) =
maxyey f(z,u). Then UY = {u € U | f(Z,u) = ¥(Z)}. Then U° is
convex and compact. By Lemma 2.2, for any d € R",

Y'(Z,d) = max V1 f(Z,u) " d.
uelUo
Suppose to the contrary that there exists z* € C' such that
max V1 f(Z,u)’ (z* — z) < 0.
ueUo
Then there exists § > 0 such that for any ¢ € (0, 6),
YT +t(z" — ) < P(T).

Since Z € intF, this contradicts the optimality at Z. Thus there does
not exist x € C such that

max V1 f(Z,u)" (z — z) < 0.
uelUo

We assume that Ji1(Z) # 0. Let ¢j(z) = maxyev; gj(z,v5), j =
1,---,m and ‘/jo = {vj = ‘/J | gj(javj) = (Pj(i')}7 J=1--,m. Then
Vjo is convex and compact. By Lemma 2.2, for any d € R",
¢j(z,d) = max Vig;(z,0;)"d, j=1,--- ,m.
”L)jEVjO
Assume to the contrary that the following system has a solution z* € C;
max V1 f(z,u) (z* — ) <0,
uelUo
max V1g;(z,v;)" (z* —7) <0, j € J1(2).
ijV'jO
Thus the following system has a solution z* € C;}
Y (Z;2* — 7) <0,
@i (T2 — 1) <0, j € Ji(Z).



On duality theorems for robust optimization problems 727

Since ;(x), i € J2(Z) is continuously differentiable, there exists 6 > 0
such that for any ¢ € (0, )

pj(@+t(a" — 7)) <;j(x) =0, j€ (),

wi( +t(z" — 7)) <0, i€ JoT).
This contradicts the optimality of . Thus the following system has no
solution = € C:

max Vi f(z,u)? (z — &) <0,
uel0

max Vig;(%,v;)" (x — &) <0, j € J1(Z).
vJGV
Let ho(z) = max,cpo Vi f(Z,u)T (z—z) and hj(z) = max, cyo V1g;(Z, vj) T
J
(x — ), j € Ji(z). Then hy and hj, j € Ji(z) are convex. Thus, by
Generalized Gordan alternative theorem in [10, p. 65], there exist A > 0,
pi >0, j € Ji(Z), not all zero, such that for all x € C,

Amax V1 f(Z,u) (z — 7) E j1j Mmax Vlgj (7, U])T(ZL' z) >0,
uelUo0 jE
JE€J1(Z)
that is,

inf  max |[AVif(z,u)T(z—7)+ Z 13 V1g;(7,v))" (z - 7)| 2 0.
zeC ueUO,vjEVjO jeJ1(Z)

We can check that u +— Vi f(z,u)?(z — z) and vj — V1g;(z,v;)T (z —
T), j € J1(z) are concave on U° and Vjo, respectively (See the proof of
Theorem 3.1 in [7]). So, by min-max theorem [11, Corollary 37.3.2],

£ 1A I V19 (Z,v) (x —7)| >0,
e o 12 Vif(@ ) (z x)+jgl%f)ﬂj 19;(®, )" (z —2)| >

Thus there exists u; € U and v; € V}, j € Ji(Z) such that for any = € C,
AV f(@,0) (x—2)+ > pVigi(z, )7 (z — 2) > 0.
Jj€J1(T)
From (EMFCQ), A can not be 0. Thus we may assume that \ = 1.
Hence for any x € C,

Vlf(:f,ﬁ)T(ar —-I)+ Z ujvlgj(i‘,@j)T<w —-I) >0,
JEJ1(Z)
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that is,
~Vif(@u) — > p;Vig(x,v;) € No(x).
jen(z)
Therefore

0eVif(@u)+ Y. p;Vig(@ ;) + No(z).
JjEJ1(T)

Now we give a sufficient optimality theorem for (UP).

THEOREM 2.4. Let ¥ € F. Suppose that there exist ji; > 0, j =
1,---,m,ueUandv; €V}, j=1,---,m such that

0€Vif(@a) + Y uVig(z,v;) + Ne(@),
j=1

f(l'au) = glg[}{f(xvu)v

If f(-,u) and g;(-,v;), j=1,---,m, are convex on R", then € F' is a
robust solution of (UP).

Proof. For any = € F,
maxf(x,u) - f(jﬂjL)

uelU

> f(a},ﬂ)—f(.f,ﬂ)

> =Y Vi@ 5] (- 2)

7j=1

> _Zluj |:gj($,U]) gj(x7v]):|
j=1

= _Zﬁjgj(xavy)
j=1

>0

Hence maxyep f(x,u) > max,ey f(Z,u) for any x € F, and so z € F' is
a robust solution of (UP). O
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3. Robust duality theorems

Now we formulate a Wolfe type robust dual problem (WD) for (RP).

(WD) maximize f(z,u) + Z wig;(x,vj)
j=1

m
subject to 0€eVif(z,u)+ ZMlegj(ZU,’Uj) + Ne(z),
j=1
;i >0, welU, veV; j=1,---,m

Let V=V x.-- xV,.

Now we establish duality theorems (weak duality theorem, strong
duality theorem) which hold between (RP) and (WD).

THEOREM 3.1. (Weak Duality) Let x € R™ be feasible for (RP) and
(Z,u,0, 1) € R"xU xV xR™ be feasible for (WD). Suppose that f(-, @)
and g;(-,v;), j=1,---,m are convex, then

m
. _
i ) 2 S50+ 3 .0

Proof. Let x be feasible for (RP) and (7, @, v, 1) be feasible for (WD).
Then there exists £ € No(Z) such that

Then we have
fla,a) — f(z,u) - f}ﬂjgj(l’vvj)
2
e B WS
2
RIS WAL R
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= [Vif@a) + Y 1 Vig@0)] (@-2)
j=1

Since £ € No(z) and x € C, (=€)T(x—2) > 0. Hence f(z,u) > f(Z,u)+

> 71 139(%, ;). Therefore, maxyey f(v,u) > f(Z,4)+371, fijg;(T,v;).
O

THEOREM 3.2. (Strong Duality) Let & be a robust solution of (UP).
Assume that the Extended Mangasarian-Fromovitz constraint qualifi-
cation holds at x. Then, there exist (u,v, i) such that (z,u,v,[) is
feasible for (WD) and the objective values of (RP) and (WD) are equal.
If f(-,u) and g;(-,v5), j = 1,--- ,m are convex, f(Z,-) is concave on
U and gj(z,-), j = 1,---,m are concave on Vj, then (Z,u,v,[1) is a
solution of (WD).

Proof. Since Z is a robust solution of (UP) at which the Extended
Mangasarian-Fromovitz constraint qualification holds, then by Theorem
2.3, there exist p1; >0, j=1,--- ,m,ue€Uandv;€V;, j=1,---,m,
such that

0€Vif(z,a) Zujvlgngg + Ne(z),

f(@,u) = maXf( u),

uelU
ﬁ]g](j7vj> :Oa .7: 17 , M

Thus (z, u, v, i) is feasible for (WD) and the objective values of (RP) and
(WD) are equal. Moreover, maxyev f(Z,u) = f(Z,a)+3_7", [i;9;(, ;).
It follows from weak duality (Theorem 3.1) that for any feasible solution
(z,u,v,p) for (WD),

max f(Z,u) = f(f,ft)-i‘Zﬂjgj(fv@j)

uelU

Hence (7, u, v, 1) is a solution of (WD). O
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4. Saddle-point theorems

In this section, we prove saddle-point theorems for the robust opti-
mization problem (RP). Let

L(z,v, p) = max f(z,u) + > nigi(x,v;),
j=1
where z € R", v € U, v; € V;, and pu € R, Then, a point (Z,v, /1) €
R"™ x V' x R is said to be a saddle-point for (RP) if

L(‘rv@vﬂ) 2 L(jaﬁuﬂ) Z L(j,v,,u),
forallz e C, veV, upeRY, where V="V x .- x V.

THEOREM 4.1. Let T be a feasible solution of (RP) and let (Z,u, v, i)
satisfy (2.1), (2.2) and (2.3). Suppose that f(-,u) and g;(-,v;), j =
1,---,m are convex. Then (Z,v, i) is a saddle-point for (RP).

Proof. Assume that (2.1), (2.2) and (2.3) holds. From (2.1), there
exists £ € No(Z) such that

Vif(z,a) Z Vlgjarvj +§_:0.

Let z € R™ be any fixed. Slnce f(-,u) and g;(-,v;), j =1,---,m are
convex,

f(iE,’L_L) - f(i‘,l_t) Z Vlf(i‘aa)T(‘r - j)?
95(x,05) — g;(Z,7;) > V1g;(Z, ;)" (x — 2).
Since fi; >0, j=1,---,m,
f(x,@) - f(i‘,ﬂ) Z Vlf(i"a)T($ - ‘f)v
195 (@, 05) — iig;(%,05) > 1;Vag;(2,0;) (& = 2), j=1,-- ,m.

Summing up all these inequalities, for any x € C
m m
{f(x,a>+2ajgj<x,@j>}—{ Za 95(,5;) |

> Vs, +§:vaﬁx%g7@—f)

j=1
=—{(z -7
> 0.
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From (2.2), for any x € C,

m m
max f(z, u) + > nigi(xv) = flwa)+ Y Aig(w,v))
=1 j=1

f@a)+Y nig(z,v;)

J=1

m
= max f(@u)+ ) f9,(7,7y),

v

j=1
that is, L(x,v, 1) > L(Z,v, ) for any x € C. Now, since Z is feasible for
(RP), it follows from (2.3) that

m m
> 1igi(®,5) = > pig(E,v5) >0
j=1 j=1
for any p € R and v; € V;. Thus
m m
F @)+ > fg5(@,0) = { F@,) + 3 wigi(@,05) } 2 0,
j=1 j=1
and hence for any p € R and v; € V},
m m
7 oo (7 5) — 7 g (Z.v) b >0
mawx f (7, u) + ; fi;9; (%, ;) {rgeag f(@,u) + ;uggj (z, vg)} >0,
that is, L(Z,v, ) > L(Z, v, u). Therefore, (z,u, v, ) is a saddle-point of
(RP). 0

THEOREM 4.2. If there exists fi € R} such that (z,v, i) is a saddle-
point for (RP), then T is a robust solution for (UP).

Proof. Let (z,0, 1) be a saddle-point for (RP). From the right in-
equality of saddle-point conditions,

m m
max f(7,u) + ; 7ij95 (%, 0j) > max f(7,u) + ;1 195 (%, v;)

for any p € R and v; € V;. Thus
m m
D19 (@) = Y pigi (@, vg)
j=1 j=1

for any p € R and v; € V;. Letting u = 0 in the last inequality,
> iy l1j9;(%,v5) > 0. Letting = 2i and v; = v; in the last inequality
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> i1 139i(%, ;) < 0. Therefore, 377, fijg;(,v;) = 0. So, from the left
inequality of saddle-point conditions, we have, for any feasible solution x

for (RP), max,ey f(z,u) > max,ey f(Z,u). Hence Z is a robust solution
of (UP). O
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