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ON DUALITY THEOREMS FOR ROBUST
OPTIMIZATION PROBLEMS

Gue Myung Lee* and Moon Hee Kim**

Abstract. A robust optimization problem, which has a maxi-
mum function of continuously differentiable functions as its objec-
tive function, continuously differentiable functions as its constraint
functions and a geometric constraint, is considered. We prove a nec-
essary optimality theorem and a sufficient optimality theorem for
the robust optimization problem. We formulate a Wolfe type dual
problem for the robust optimization problem, which has a differen-
tiable Lagrangean function, and establish the weak duality theorem
and the strong duality theorem which hold between the robust opti-
mization problem and its Wolfe type dual problem. Moreover, sad-
dle point theorems for the robust optimization problem are given
under convexity assumptions.

1. Introduction

Consider the standard nonlinear programming problem with inequal-
ity constraints and a geometric constraint.

(P) inf
x∈Rn

{f(x) : gi(x) ≤ 0, i = 1, · · · ,m, x ∈ C},

where f : Rn → R and gi : Rn → R are continuously differentiable
functions, and C is a closed convex subset of Rn. The problem in the
face of data uncertainty in the objective function and the constraints
can be captured by the following nonlinear programming problem:

(UP) inf
x∈Rn

{f(x, u) : gi(x, vi) ≤ 0, i = 1, · · · ,m, x ∈ C},
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where u, vi are uncertain parameters and u ∈ U , vi ∈ Vi, i = 1, · · · ,m for
some convex compact sets U ⊂ Rp, Vi ⊂ Rq, i = 1, · · · ,m, respectively
and f : Rn × Rp → R, gi : Rn × Rq → R, i = 1, · · · , m are continuously
differentiable. Robust optimization, which has emerged as a powerful
deterministic approach for studying mathematical programming under
uncertainty ([1] - [4], [6]), associates with the uncertain program (UP)
its robust counterpart [5],

(RP) inf
x∈Rn

{max
u∈U

f(x, u) : gi(x, vi) ≤ 0, ∀vi ∈ Vi, i = 1, · · · ,m, x ∈ C},

where the uncertain objective function and constraints are enforced for
every possible value of the parameters within their prescribed uncer-
tainty sets U , Vi, i = 1, · · · ,m. Recently, Jeyakumar, Li and Lee [7]
established necessary optimality theorems and robust duality theorems
for a generalized convex programming problem in the face of data uncer-
tainty. Kuroiwa and Lee [9] extended the necessary optimality theorem
to a multiobjective robust optimization problem. Futhermore, Kim [8]
extended the robust duality theorems to a multiobjective robust opti-
mization problem.

In this paper, we consider a robust optimization problem, which has
a maximum function of continuously differentiable functions as its ob-
jective function, continuously differentiable functions as its constraint
functions and a geometric constraint. We prove necessary and sufficient
optimality theorems for the robust optimization problem. We formulate
a Wolfe type dual problem for the robust optimization problem, which
has a differentiable Lagrangean function, and establish the weak duality
theorem and the strong duality theorem which hold between the robust
optimization problem and its Wolfe type dual problem. Moreover, sad-
dle point theorems for the robust optimization problem are given under
convexity assumptions.

2. Robust optimality theorems

In this section, we provide necessary, and sufficient optimality condi-
tions for the uncertain optimization problem (UP) by using its robust
counterpart (RP). To begin with, we recall that the robust feasible set
F is defined by

F := {x ∈ Rn : gi(x, vi) ≤ 0, ∀vi ∈ Vi, i = 1, · · · ,m, x ∈ C}.
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We say that x∗ is a robust solution of (UP) if x∗ is a solution of (RP),
that is, x∗ ∈ F and maxu∈U f(x, u) ≥ maxu∈U f(x∗, u) for any x ∈ F.
We denote ∇1g the derivative of g with respect to the first variable.

Definition 2.1. Let C be a closed convex set in Rn and x ∈ C. Let
NC(x) = {v ∈ Rn | vT (y − x) ≤ 0 for all y ∈ C}. Then NC(x) is called
the normal cone to C at x.

Lemma 2.2. [12] Let Θ be a nonempty, compact topological space
and let h : Rn × Θ → R be such that h(·, θ) is differentiable for every
θ ∈ Θ and ∇1h(x, θ) is continuous on Rn×Θ. Let φ(x) = supθ∈Θ h(x, θ).
Define Θ̄ to be Θ̄(x) := arg maxθ∈Θ h(x, θ). Then the function φ(x) is
locally Lipschitz continuous, directionally differentiable and

φ′(x, d) = sup
θ∈Θ̄(x)

∇1h(x, θ)T d,

where φ′(x, d) = limt→0+
φ(x+td)−φ(x)

t .

Let x̄ ∈ F and let us decompose J := {1, · · · , m} into two index sets
J = J1(x̄)∪J2(x̄) where J1(x̄) = {j ∈ J | ∃vj ∈ Vj s.t. gj(x̄, vj) = 0} and
J2(x̄) = J \J1(x̄). Since x̄ ∈ F , J1(x̄) = {j ∈ J | maxvj∈Vj gj(x̄, vj) = 0}
and J2(x̄) = {j ∈ J | maxvj∈Vj gj(x̄, vj) < 0}.

Now we say that an Extended Mangasarian-Fromovitz constraint
qualification (EMFCQ) holds at x̄ for (RP) if there exists x̂ ∈ C such
that for any j ∈ J1(x̄) and any vj ∈ Vj ,

∇1gj(x̄, vj)T (x̂− x̄) < 0.

Now we present a necessary optimality theorem for a robust solution
of (UP). Following the approaches of the proofs for Theorem 3.1 in [7]
and Theorem 3.7 in [9], we can prove the following theorem. For the
completeness, we give the proof for the following theorem.

Theorem 2.3. Let x̄ ∈ F be a robust solution of (UP). Suppose that
f(x̄, ·) is concave on U and gj(x̄, ·) are concave on Vj , j = 1, · · · , m.
Then there exist λ ≥ 0, µj ≥ 0, j = 1, · · · , m, not all zero, ū ∈ U and
v̄j ∈ Vj , j = 1, · · · ,m such that

0 ∈ λ∇1f(x̄, ū) +
m∑

j=1

µj∇1gj(x̄, v̄j) + NC(x̄),

f(x̄, ū) = max
u∈U

f(x̄, u),

µjgj(x̄, v̄j) = 0, j = 1, · · · ,m.
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Moreover, if we assume that the Extended Mangasarian-Fromovitz con-
straint qualification (EMFCQ) holds at x̄, then

0 ∈ ∇1f(x̄, ū) +
m∑

j=1

µj∇1gj(x̄, v̄j) + NC(x̄),(2.1)

f(x̄, ū) = max
u∈U

f(x̄, u),(2.2)

µjgj(x̄, v̄j) = 0, j = 1, · · · , m.(2.3)

Proof. Assume that maxvj∈Vj gj(x̄, vj) < 0, j = 1, · · · ,m, and J1(x̄) =
∅. Then x̄ ∈ intF , where intF is the interior of F . Let ψ(x) =
maxu∈U f(x, u). Then U0 = {u ∈ U | f(x̄, u) = ψ(x̄)}. Then U0 is
convex and compact. By Lemma 2.2, for any d ∈ Rn,

ψ′(x̄, d) = max
u∈U0

∇1f(x̄, u)T d.

Suppose to the contrary that there exists x∗ ∈ C such that

max
u∈U0

∇1f(x̄, u)T (x∗ − x̄) < 0.

Then there exists δ > 0 such that for any t ∈ (0, δ),

ψ(x̄ + t(x∗ − x̄)) < ψ(x̄).

Since x̄ ∈ intF , this contradicts the optimality at x̄. Thus there does
not exist x ∈ C such that

max
u∈U0

∇1f(x̄, u)T (x− x̄) < 0.

We assume that J1(x̄) 6= ∅. Let ϕj(x) = maxvj∈Vj gj(x, vj), j =
1, · · · ,m and V 0

j = {vj ∈ Vj | gj(x̄, vj) = ϕj(x̄)}, j = 1, · · · ,m. Then
V 0

j is convex and compact. By Lemma 2.2, for any d ∈ Rn,

ϕ′j(x̄, d) = max
vj∈V 0

j

∇1gj(x̄, vj)T d, j = 1, · · · , m.

Assume to the contrary that the following system has a solution x∗ ∈ C;

max
u∈U0

∇1f(x̄, u)T (x∗ − x̄) < 0,

max
vj∈V 0

j

∇1gj(x̄, vj)T (x∗ − x̄) < 0, j ∈ J1(x̄).

Thus the following system has a solution x∗ ∈ C;

ψ′(x̄; x∗ − x̄) < 0,

ϕ′j(x̄; x∗ − x̄) < 0, j ∈ J1(x̄).
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Since ϕi(x), i ∈ J2(x̄) is continuously differentiable, there exists δ > 0
such that for any t ∈ (0, δ),

x̄ + t(x∗ − x̄) ∈ C,

ψ(x̄ + t(x∗ − x̄)) < ψ(x̄),
ϕj(x̄ + t(x∗ − x̄)) < ϕj(x̄) = 0, j ∈ J1(x̄),
ϕi(x̄ + t(x∗ − x̄)) < 0, i ∈ J2(x̄).

This contradicts the optimality of x̄. Thus the following system has no
solution x ∈ C:

max
u∈U0

∇1f(x̄, u)T (x− x̄) < 0,

max
vj∈V 0

j

∇1gj(x̄, vj)T (x− x̄) < 0, j ∈ J1(x̄).

Let h0(x) = maxu∈U0 ∇1f(x̄, u)T (x−x̄) and hj(x) = maxvj∈V 0
j
∇1gj(x̄, vj)T

(x − x̄), j ∈ J1(x̄). Then h1 and hj , j ∈ J1(x̄) are convex. Thus, by
Generalized Gordan alternative theorem in [10, p. 65], there exist λ ≥ 0,
µj ≥ 0, j ∈ J1(x̄), not all zero, such that for all x ∈ C,

λ max
u∈U0

∇1f(x̄, u)T (x− x̄) +
∑

j∈J1(x̄)

µj max
vj∈V 0

j

∇1gj(x̄, vj)T (x− x̄) ≥ 0,

that is,

inf
x∈C

max
u∈U0,vj∈V 0

j

[
λ∇1f(x̄, u)T (x− x̄) +

∑

j∈J1(x̄)

µj∇1gj(x̄, vj)T (x− x̄)
]
≥ 0.

We can check that u 7→ ∇1f(x̄, u)T (x − x̄) and vj 7→ ∇1gj(x̄, vj)T (x −
x̄), j ∈ J1(x̄) are concave on U0 and V 0

j , respectively (See the proof of
Theorem 3.1 in [7]). So, by min-max theorem [11, Corollary 37.3.2],

max
u∈U0,vj∈V 0

j

inf
x∈C

[
λ∇1f(x̄, u)T (x− x̄) +

∑

j∈J1(x̄)

µj∇1gj(x̄, vj)T (x− x̄)
]
≥ 0.

Thus there exists ūi ∈ U and v̄j ∈ Vj , j ∈ J1(x̄) such that for any x ∈ C,

λ∇1f(x̄, ū)T (x− x̄) +
∑

j∈J1(x̄)

µj∇1gj(x̄, v̄j)T (x− x̄) ≥ 0.

From (EMFCQ), λ can not be 0. Thus we may assume that λ = 1.
Hence for any x ∈ C,

∇1f(x̄, ū)T (x− x̄) +
∑

j∈J1(x̄)

µj∇1gj(x̄, v̄j)T (x− x̄) ≥ 0,
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that is,

−∇1f(x̄, ū)−
∑

j∈J1(x̄)

µj∇1gj(x̄, v̄j) ∈ NC(x̄).

Therefore

0 ∈ ∇1f(x̄, ū) +
∑

j∈J1(x̄)

µj∇1gj(x̄, v̄j) + NC(x̄).

Now we give a sufficient optimality theorem for (UP).

Theorem 2.4. Let x̄ ∈ F . Suppose that there exist µj ≥ 0, j =
1, · · · ,m, ū ∈ U and v̄j ∈ Vj , j = 1, · · · ,m such that

0 ∈ ∇1f(x̄, ū) +
m∑

j=1

µj∇1gj(x̄, v̄j) + NC(x̄),

f(x̄, ū) = max
u∈U

f(x̄, u),

µjgj(x̄, v̄j) = 0, j = 1, · · · , m.

If f(·, ū) and gj(·, v̄j), j = 1, · · · ,m, are convex on Rn, then x̄ ∈ F is a
robust solution of (UP).

Proof. For any x ∈ F ,

max
u∈U

f(x, u)− f(x̄, ū)

≥ f(x, ū)− f(x̄, ū)

≥ ∇1f(x̄, ū)T (x− x̄)

≥ −
m∑

j=1

µ̄j∇1gj(x̄, v̄j)]
]T

(x− x̄)

≥ −
m∑

j=1

µ̄j

[
gj(x, v̄j)− gj(x̄, v̄j)

]

= −
m∑

j=1

µ̄jgj(x, v̄j)

≥ 0.

Hence maxu∈U f(x, u) ≥ maxu∈U f(x̄, u) for any x ∈ F , and so x̄ ∈ F is
a robust solution of (UP).
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3. Robust duality theorems

Now we formulate a Wolfe type robust dual problem (WD) for (RP).

(WD) maximize f(x, u) +
m∑

j=1

µjgj(x, vj)

subject to 0 ∈ ∇1f(x, u) +
m∑

j=1

µj∇1gj(x, vj) + NC(x),

µj ≥ 0, u ∈ U, vj ∈ Vj , j = 1, · · · ,m.

Let V = V1 × · · · × Vm.
Now we establish duality theorems (weak duality theorem, strong

duality theorem) which hold between (RP) and (WD).

Theorem 3.1. (Weak Duality) Let x ∈ Rn be feasible for (RP) and
(x̄, ū, v̄, µ̄) ∈ Rn×U×V ×Rm be feasible for (WD). Suppose that f(·, ū)
and gj(·, v̄j), j = 1, · · · ,m are convex, then

max
u∈U

f(x, u) ≥ f(x̄, ū) +
m∑

j=1

µ̄jgj(x̄, v̄j).

Proof. Let x be feasible for (RP) and (x̄, ū, v̄, µ̄) be feasible for (WD).
Then there exists ξ̄ ∈ NC(x̄) such that

∇1f(x̄, ū) +
m∑

j=1

µ̄j∇1gj(x̄, v̄j) + ξ̄ = 0.

Then we have,

f(x, ū)− f(x̄, ū)−
m∑

j=1

µ̄jgj(x̄, v̄j)

≥ ∇1f(x̄, ū)T (x− x̄)−
m∑

j=1

µ̄jgj(x̄, v̄j)

≥ ∇1f(x̄, ū)T (x− x̄) +
m∑

j=1

µ̄j

[
gj(x, v̄j)− gj(x̄, v̄j)

]

≥ ∇1f(x̄, ū)T (x− x̄) +
m∑

j=1

µ̄j∇1gj(x̄, v̄j)T (x− x̄)
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=
[
∇1f(x̄, ū) +

m∑

j=1

µ̄j∇1gj(x̄, v̄j)
]T

(x− x̄)

= (−ξ̄)T (x− x̄).

Since ξ̄ ∈ NC(x̄) and x ∈ C, (−ξ̄)T (x−x̄) ≥ 0. Hence f(x, ū) ≥ f(x̄, ū)+∑m
j=1 µ̄jgj(x̄, v̄j). Therefore, maxu∈U f(x, u) ≥ f(x̄, ū)+

∑m
j=1 µ̄jgj(x̄, v̄j).

Theorem 3.2. (Strong Duality) Let x̄ be a robust solution of (UP).
Assume that the Extended Mangasarian-Fromovitz constraint qualifi-
cation holds at x̄. Then, there exist (ū, v̄, µ̄) such that (x̄, ū, v̄, µ̄) is
feasible for (WD) and the objective values of (RP) and (WD) are equal.
If f(·, ū) and gj(·, v̄j), j = 1, · · · ,m are convex, f(x̄, ·) is concave on
U and gj(x̄, ·), j = 1, · · · ,m are concave on Vj , then (x̄, ū, v̄, µ̄) is a
solution of (WD).

Proof. Since x̄ is a robust solution of (UP) at which the Extended
Mangasarian-Fromovitz constraint qualification holds, then by Theorem
2.3, there exist µ̄j ≥ 0, j = 1, · · · ,m, ū ∈ U and v̄j ∈ Vj , j = 1, · · · , m,
such that

0 ∈ ∇1f(x̄, ū) +
m∑

j=1

µ̄j∇1gj(x̄, v̄j) + NC(x̄),

f(x̄, ū) = max
u∈U

f(x̄, u),

µ̄jgj(x̄, v̄j) = 0, j = 1, · · · , m.

Thus (x̄, ū, v̄, µ̄) is feasible for (WD) and the objective values of (RP) and
(WD) are equal. Moreover, maxu∈U f(x̄, u) = f(x̄, ū)+

∑m
j=1 µ̄jgj(x̄, v̄j).

It follows from weak duality (Theorem 3.1) that for any feasible solution
(x̃, ũ, ṽ, µ̃) for (WD),

max
u∈U

f(x̄, u) = f(x̄, ū) +
m∑

j=1

µ̄jgj(x̄, v̄j)

≥ f(x̃, ũ) +
m∑

j=1

µ̃jgj(x̃, ṽj).

Hence (x̄, ū, v̄, µ̄) is a solution of (WD).
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4. Saddle-point theorems

In this section, we prove saddle-point theorems for the robust opti-
mization problem (RP). Let

L(x, v, µ) = max
u∈U

f(x, u) +
m∑

j=1

µjgj(x, vj),

where x ∈ Rn, u ∈ U, vj ∈ Vj , and µ ∈ Rm
+ . Then, a point (x̄, v̄, µ̄) ∈

Rn × V × Rm
+ is said to be a saddle-point for (RP) if

L(x, v̄, µ̄) ≥ L(x̄, v̄, µ̄) ≥ L(x̄, v, µ),

for all x ∈ C, v ∈ V , µ ∈ Rm
+ , where V = V1 × · · · × Vm.

Theorem 4.1. Let x̄ be a feasible solution of (RP) and let (x̄, ū, v̄, µ̄)
satisfy (2.1), (2.2) and (2.3). Suppose that f(·, ū) and gj(·, v̄j), j =
1, · · · ,m are convex. Then (x̄, v̄, µ̄) is a saddle-point for (RP).

Proof. Assume that (2.1), (2.2) and (2.3) holds. From (2.1), there
exists ξ̄ ∈ NC(x̄) such that

∇1f(x̄, ū) +
m∑

j=1

µ̄j∇1gj(x̄, v̄j) + ξ̄ = 0.

Let x ∈ Rn be any fixed. Since f(·, ū) and gj(·, v̄j), j = 1, · · · ,m are
convex,

f(x, ū)− f(x̄, ū) ≥ ∇1f(x̄, ū)T (x− x̄),

gj(x, v̄j)− gj(x̄, v̄j) ≥ ∇1gj(x̄, v̄j)T (x− x̄).

Since µ̄j ≥ 0, j = 1, · · · ,m,

f(x, ū)− f(x̄, ū) ≥ ∇1f(x̄, ū)T (x− x̄),

µ̄jgj(x, v̄j)− µ̄jgj(x̄, v̄j) ≥ µ̄j∇1gj(x̄, v̄j)T (x− x̄), j = 1, · · · ,m.

Summing up all these inequalities, for any x ∈ C

{
f(x, ū) +

m∑

j=1

µ̄jgj(x, v̄j)
}
−

{
f(x̄, ū) +

m∑

j=1

µ̄jgj(x̄, v̄j)
}

≥
{
∇1f(x̄, ū) +

m∑

j=1

µ̄j∇1gj(x̄, v̄j)
}T

(x− x̄)

= −ξ̄T (x− x̄)
≥ 0.
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From (2.2), for any x ∈ C,

max
u∈U

f(x, u) +
m∑

j=1

µ̄jgj(x, v̄j) ≥ f(x, ū) +
m∑

j=1

µ̄jgj(x, v̄j)

≥ f(x̄, ū) +
m∑

j=1

µ̄jgj(x̄, v̄j)

= max
u∈U

f(x̄, u) +
m∑

j=1

µ̄jgj(x̄, v̄j),

that is, L(x, v̄, µ̄) ≥ L(x̄, v̄, µ̄) for any x ∈ C. Now, since x̄ is feasible for
(RP), it follows from (2.3) that

m∑

j=1

µ̄jgj(x̄, v̄j)−
m∑

j=1

µjgj(x̄, vj) ≥ 0

for any µ ∈ Rm
+ and vj ∈ Vj . Thus

f(x̄, ū) +
m∑

j=1

µ̄jgj(x̄, v̄j)−
{

f(x̄, ū) +
m∑

j=1

µjgj(x̄, vj)
}
≥ 0,

and hence for any µ ∈ Rm
+ and vj ∈ Vj ,

max
u∈U

f(x̄, u) +
m∑

j=1

µ̄jgj(x̄, v̄j)−
{

max
u∈U

f(x̄, u) +
m∑

j=1

µjgj(x̄, vj)
}
≥ 0,

that is, L(x̄, v̄, µ̄) ≥ L(x̄, v, µ). Therefore, (x̄, ū, v̄, µ̄) is a saddle-point of
(RP).

Theorem 4.2. If there exists µ̄ ∈ Rm
+ such that (x̄, v̄, µ̄) is a saddle-

point for (RP), then x̄ is a robust solution for (UP).

Proof. Let (x̄, v̄, µ̄) be a saddle-point for (RP). From the right in-
equality of saddle-point conditions,

max
u∈U

f(x̄, u) +
m∑

j=1

µ̄jgj(x̄, v̄j) ≥ max
u∈U

f(x̄, u) +
m∑

j=1

µjgj(x̄, vj)

for any µ ∈ Rm
+ and vj ∈ Vj . Thus

m∑

j=1

µ̄jgj(x̄, v̄j) ≥
m∑

j=1

µjgj(x̄, vj)

for any µ ∈ Rm
+ and vj ∈ Vj . Letting µ = 0 in the last inequality,∑m

j=1 µ̄jgj(x̄, v̄j) ≥ 0. Letting µ = 2µ̄ and vj = v̄j in the last inequality
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∑m
j=1 µ̄jgj(x̄, v̄j) ≤ 0. Therefore,

∑m
j=1 µ̄jgj(x̄, v̄j) = 0. So, from the left

inequality of saddle-point conditions, we have, for any feasible solution x
for (RP), maxu∈U f(x, u) ≥ maxu∈U f(x̄, u). Hence x̄ is a robust solution
of (UP).

References

[1] D. Bertsimas and D. Brown, Constructing uncertainty sets for robust linear
optimization, Oper. Res. 57 (2009), 1483-1495.

[2] A. Ben-Tal and A. Nemirovski, Robust optimization-methodology and applica-
tions, Math. Program. Ser. B 92 (2002), 453-480.

[3] A. Ben-Tal and A. Nemirovski, A selected topics in robust convex optimization,
Math. Program. Ser. B 112 (2008), 125-158.

[4] D. Bertsimas, D. Pachamanova, and M. Sim, Robust linear optimizaion under
general norms, Oper. Res. Lett. 32 (2004), 510-516.

[5] A. Ben-Tal, L. E. Ghaoui, and A. Nemirovski, Robust optimization, Princeton
Series in Applied Mathematics, 2009.

[6] V. Jeyakumar, G. Li, and G. M. Lee, A robust von Neumann minimax theorem
for zero-sum games under bounded payoff uncertainty, Oper. Res. Lett. 39
(2011), 109-114.

[7] V. Jeyakumar, G. Li, and G. M. Lee, Robust duality for generalized convex
programming problems under data uncertainty, Nonlinear Analysis 75 (2012),
1362-1373.

[8] M. H. Kim, Robust duality for generalized invex programming problems, Com-
mun. Korean Math. Soc. 28 (2013), 419-423.

[9] D. Kuroiwa and G. M. Lee, On robust multiobjective optimization, Vietnam J.
Math. 40 (2012), 305-317.

[10] O. L. Mangasarian, Nonlinear Programming, SIAM, Philadelphia, 1994.
[11] R. T. Rockafellar, Convex Analysis, Princeton Univ. Press, Princeton, N. J.,

1970.
[12] A. Shapiro, D. Dentcheva, and A. Ruszczynski, Lectures on Stochastic Pro-

gramming: Modeling and Theory, SIAM, Philadelphia, 2009.



734 Gue Myung Lee and Moon Hee Kim

*
Department of Applied Mathematics
Pukyong National University
Busan 608-737, Republic of Korea
E-mail : gmlee@pknu.ac.kr

**
School of Free Major
Tongmyong University
Busan 608-711, Republic of Korea
E-mail : mooni@tu.ac.kr


